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The wide application of composite materials in various branches of technology promoted 
the rapid development of bonding technology, the increased complexity of structures with 
bonded and bonded-mechanical joints, and the refinement of calculational models to evaluate 
the stress-strain state and the residual strength of the structures. A significant amount 
of research, mainly with finite elements, has been devoted to analyzing the stress-strain 
state of isotropic or anisotropic platelike structural elements with defects (cracks, rup- 
tures) and bonded reinforcing elements (crack stiffeners, repair straps) (see [i-3] for an ex- 
ample and the bibliographies therein). Nonetheless, there are practically no publications 
on similar problems for bonded-mechanical (riveted and bonded or bolted and bonded) joints. 

Here we construct a general system of integral equations for an elastic rectilinear 
anisotropic semi-infinite plate weakened by a system of curvilinear cuts and strengthened 
by bonded or riveted and bonded ribs. An algorithm is suggested for a numerical solution. 
Several calculated results are presented and compared with experimental data. 

I. We examine a semi-infinite elastic plate of constant thickness, made from a recti- 
linear anisotropic material, which has one plane of elastic symmetry parallel to the mid- 
plane of the plate D = {-~ < y < ~, x > 0}. The plate is weakened by a system of arbitrarily 
oriented smooth curvilinear cuts all the way through Lj = {t = tJ(n) I lql < i} (j = I, k). 
The cuts r s (s = ~, m) form angles %s with the x axis (Pig. la). Strengthening elements 
(stiffening ribs) (Fig. ib) are fastened along the cuts with a bond layer with shear modulus 
G s and thickness A s and also with pins of diameter d (Fig. ib). The pins are numbered from 
i to N s on each rib. We denote the pliance of the pins by qS, and the coordinates of the 

s 
pin centers by t i (i = i, Ns). We limit ourselves to the case where an external load field, 
given by stresses at infinity, acts on the elastic system in the plate. Concentrated forces 
P~exp [i(% s + ~)] and P~exp [i% s] are applied to the ends tS(-l) and ts(1) of the ribs. The 
edges of the cuts are free from loads. Here n is the right-hand normal to the circulation 

h m 

of the lines L= U Lj and r= U F~. 
j:l ~-'I 

We make a series of simplifying assumptions [4]: The thickness of the plate and the 
dimensions of the cross section of the bond layer and the ribs are small compared to the line 
2Ps of the joint section F s. The plate is in overall state of plane stress. Weakening of 
the plate and ribs due to the placement of the pins is not considered. 

If a crack passes through a pin hole, we do not consider the effect of these holes and 
the pins that fill them. The resultant errors are insignificant if the length of the crack, 
which goes from the pin hole, is larger than the hole radius. The pin deforms elastically 
only along its axis: the shear rigidity of the rib is negligibly small. We assume that the 
rib is joined smoothly to the plate L n F = 0 (a generalization to the case where the crack 
extends under a rib is given below). The bond works in shear; the strains Ys(t) and stresses 
�9 s(t) are functions of the longitudinal coordinate. Detachment stresses arising in the bond 
are neglected. 

By a pinned attachment we mean any industrial operation or method for point fastening 
(welding, riveting, bolting), where the dimensions of the coupling area are small compared 
to both the characteristic dimensions of the body and the step c s between attachments. All 
attachments are identical. The action of the pin on the plate is modeled by the load of 
its constant tangential forces ~s (i = I, N s, s = i, m) over a square area S i (see Fig. ib) 
with side d. 
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Fig. i 

The total force vector on each pin 

Q~= fx~ds=T~d 2 ( i = i , N ~ , s = l ,  rn) ( 1 . 1 )  
D~ 

and t h e  c o n t a c t  f o r c e s  r(t) ~ {rs(t ) = ~s(t)d~[ t ~ F~, s = t,  m} t r a n s m i t t e d  f rom t h e  r i b s  t o  t h e  
p l a t e  a l o n g  t h e  c u r r e n t  F s w i l l  be c o n s i d e r e d  as  vo lume f o r c e s  in  t h e  p l a t e  which  c o i n c i d e  
w i t h  i t s  m i d p l a n e  ( e c c e n t r i c i t y  e f f e c t s  a r e  n o t  c o n s i d e r e d ) .  The p o s i t i v e  d i r e c t i o n  f o r  
QS and r s ( t )  c o i n c i d e s  w i t h  t h e  d i r e c t i o n  o f  t h e  v e c t o r  exp [ i (% s + ~)]  ( s  = 1, m). 

The s t r e s s e s  and d i s p l a c e m e n t s  in  t h e  a n i s o t r o p i c  p l a t e  a r e  e x p r e s s e d  t h r o u g h  two 
a n a l y t i c a l  f u n c t i o n s  Cv(zv)  (v = 1, 2) [5] 

(~, ~, ~)=2R~ (~, t , -  ~)  r (~, ~) =21~ (;,,q~)~(~), (1.2) 

which satisfy a given system of external loads applied to the plate, the boundary conditions 

cry [~=o = ~ !~=o = 0, T~" - -  X~ = r (t)/h, o$ = on +, u -  = u +, v -  = V +, t ~ F; ( 1 .3  ) 

a (t) (D? (t~) + b (t) r (t~) + (1)~ (t.2) = 0, t ~ L, ( 1 . 4 )  

a(t)= ~j--~2Ml(t) b(t) -~,~2 Ml(t) My(t) cos~ sin~p 
~t2 ~2 M2 (t)' ~_-~'-'~2 flI2 ( t) '  = btw - -  

and t h e  c o m p a t i b i l i t y  c o n d i t i o n s  be tween  t h e  d i s p l a c e m e n t s  o f  t h e  r i b  and t h e  p l a t e  a l o n g  t h e  
c o n t a c t  c u r v e  F s in  t h e  bond l a y e r  [1 ,  4] 

A~ "~" ~ ' ~ )  ( 1 . 5 )  w(tS, t~s)--ws(t s) =~d~rsl t  ) (t ~Fs, s= 

S 
and at the pinning points t i [4] 

w(t~,ff~)--w~(t~)=q~Q~ (t~r:, i =  l ,N~,s= l, ra), 
(1.6) NS 

r ] =  U {]q-tl<~d/2}, r;=r,\r: .  
i = l  

+ + + v_+ Here ~(z~) is the inverse image of Cv(zv); On, m~, u-, and are the left and right: limiting 
values of the stresses and displacements on F; , = ~(t) is the angle between the normal n at 
the point t e L and the x axis; w(t, %s) is the displacement of the plate at point t in the 
direction exp (i%s); Ws(t) is the displacement of the s-th rib. 

2. We use the superposition principle to find the function Cv(zv) which solves the 
boundary problem (1.2)-(1.6) in the form 

3 

= r  ( 2 .  i )  
./=1 

where ~v(zv) is the solution for the unstrengthened plate without cracks which satisfies the 
boundary conditions on the edge of the half-plane and at infinity; it can be determined by 
standard methods [5]. 

Following [4, 6], we represent CJ(z v) (j = 2, 3) in the form of a generalized Cauchy 
integral, whose integrand is the fundamental solution to the action of a single concentrated 
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force exp (i~) at the point x of an anisotropic plate [5]: 

" nvmvA ~ ('0 I (T) ds, I Av[~)- ' + = r Ivs,~Al ('~ ~ )  
q)~ (z,) = ~t [% _ ~ , %% _ ~ m~% --  ~2 ] ( 2 . 2 )  

~ v  (zv) = 2~il [ .cv _ zv 7q --  %% x='-'~m,~zv j" 

The complex f u n c t i o n  ( % ( t ) ~  {o)w(t)l t ~ L~, ] = 1, k} and t h e  contact  f o r c e s  r ( t ) =  {r~(t)[ t ~ r~, 
s = 1, m} a r e  t h e  main unknowns o f  t h e  p r o b l e m .  The c o n s t a n t s  A~( t )  (t ~ r~), l~, s,, n,,  m, a r e  
d e f i n e d  in  [ 6 ] .  

The f u n c t i o n s  0 J ( z v )  ( j  = 2,  3 ) ,  which  a r e  e x p r e s s e d  in  t h e  form o f  ( 2 . 2 ) ,  a u t o m a t i c a l i y  
satisfy the boundary conditions (1.3) and the given forces at infinity. 

From (1.2), (2.1), and (2.2), the displacements of the plate and the ribs can be written 
a s  

w (t,  ~ )  = w ~ (t,  O~) - -  B e  f ~  (~)  [ ~  (~) In (T~ - -  tv) d~v - -  

- -  I,~ In (71 - -  s~t~) (ol ('0 d-T1- nv In (72 --  ,%t~) o) 2 (~-) dTrf] - -  
.J 

} ~ [A, (~) in (~v - -  t , )  + 1 ,Ai  (~) In ( ~ - - s v t v )  + nvA  2 (~) In (?2--rnvtv)lr( 'c) ds] , 

r ( 2 . 3 )  
t Ps 

w s ( t ) = ~ ( t  + p s ) +  . 

--OS 

where  C s i s  t h e  d i s p l a c e m e n t  o f  t h e  r i b  as  a r i g i d  body;  E s and F s a r e  Young ' s  modulus  and 
t h e  c r o s s - s e c t i n a l  a r e a ,  r e s p e c t i v e l y ,  o f  t h e  s - t h  r i b ;  and w ~  %s) i s  t h e  d i s p l a c e m e n t  
f rom t h e  a c t i o n  o f  a l l  t h e  e x t e r n a l  f o r c e s .  The v a l u e s  o f  w ~  %s) w i l l  be c o n s i d e r e d  un-  
known. 

By s u b s t i t u t i n g  ( 2 . 1 )  i n t o  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 4 ) ,  we o b t a i n  

L T1 -- tl L - r 
t ~ L ,  

(%(t) = - - a ( t ) o h ( t  ) - -  b(t) oh( t  ), 

t {d  [ ~2--~2 ] b( 'O--b( t )  d~2 a('t~ -l#l d'~j 
k~(t, ~ ) =  y .  ~ [lnu ] + b(t--~(~-- ~) d~ + b(0 ~ - ~ ) ~  d~ - 

a (t i a ('c) nlml d~, b (1:) nlm 1 d'~ 2 t 12-sg, d'~t a ('0 n2m2 dTf~ 
- -  - -  T f _ m l t l  ds b(t) Zl--s2"t z ds b(t) T f - - m f t  2 ds]'  

{ I~(t)~,~, [ ~" ~') -- ~2 ] a (T) -- a (t) dT2 a (t'---) b (T) nlm--I - drgds k f ( t ,  to~, ~Lln~ . 7 [ _  + b (t---) (7~2__t2) ds b(t) ~2--mlt1 

lls 1 dT 1 a (T) nlm 1 d~ 2 b ('r) _ngmf"---_ dT~. I_ .  
T i - - s i t i  ds 2c-  T2 __ mlti ds b (t) T z -  m2-t ~ ds j '  

a 
k~(t, " [ ) = B  l( t ,  T ) - -  b ( t ) /~ ' l ( t '  T ) - - ~  f~2(t, '~), 

" (t) b (0 

[ ~ (t) ,~o, t  < ~ % (tf) , 
/i (t) = - a~ [ ~ ..~ ~ . + r (tO + -b (t-5 

A v (~) l~%.4, (x) nvmvA ~ (x) 

To Eqs. (2.4) we must apply additional limitations 

(2.4) 
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5 % (x) d~, = O, ( 2 . 5 )  
L 

which f o l l o w  from t h e  u n i q u e n e s s  o f  t h e  d i s p l a c e m e n t s  in  t r a n s v e r s i n g  t h e  gj ( j  = l ,  k ) .  

From ( 1 . 5 )  and ( 1 . 6 ) ,  w i t h  a c o n s i d e r a t i o n  o f  Eqs. ( 1 . 1 )  and ( 2 . 3 ) ,  we have  

D~r~ (t) + S k4 (t, "~)r (T) ds + S l~e {k 5 (t, "0 % (~)) ds + C~ = / ~  (t), t ~ F, 
F L 

t - k 4 (t, ~) = --  ~- hn T, (O) [A, ('~) In (*~ --  t,) § lvA~ 0c) !n (u -- svtv) + n,A.~ (~) in (v.~ -- m$~)] + k* (t, ~), 
' V = I  

k~ (t, ~) = ~-7 - -  - -  

d~ d~l X 
- -  b (~) I'~ (0) in (% - -  t~) d ]  ~ 1 ,T,  (0) I n  ( T :  - -  s , t , )  + 

+ a (~) ~ ~,~ nil '  v (e) In (~ -- mSv) + b (z) ~ ~.~ n,T v (@) ]n (}~ -- mS,)  , 
~;=i ~'=I 

P: ( 2 . 6 )  
/~ (t) = ~o (t, e~) - : 7 7  (t + o0 ,  

k*(t, "0 = 8~9~(q -- ~)[sign (~ -- ~l) + t]/(2E~F~), ~ = t~0]), t = t~(~) 

[ q d ~ ( d 4 - ,  

(6s is the Kronecker delta). 

(l, s = ~_, m ) ,  
s 

t ~  s, 

The unknown constants C s (s = i, m) can be determined from the equilibrium conditions 
for the s-th rib: 

f r~(T)ds=P~--p~ (s= i----~). (2.7) 
~s 

The system of integral equations (2.4) and (2.6), along with the auxiliary conditions 
(2.5) and (2.7), gives a unique solution to the problem. The integrands kj(t, x) (j = i, 5) 
can have no more than a weak singularity, in view of the simplifying assumptions. The resul- 
tant determining system of equations remains valid, if at some part of the line F there is 
no connection between the plate and the rib via the bond or pins, for example, as a result of 
failure of the bond or pins due to the nearness of a crack and its passage under the rib. 
Here a debond zone is formed, whose dimensions can be found, for example, by using the equal- 
ity of the shear strains in the bond at the ends of the debond section with the maximum allow- 
able strain y0, which can be determined experimentally [7]. Here the system (2.4)-(2.7) must 
be augmented by the condition r~(t)/(Gfls ) = y0, t~F. We will assume that the dimensions of the 
debond zone are given when the crack passes under a rib. 

3. The behavior of the system (2.4)-(2.7) is known near singular points, which corre- 
spond to the ends of cracks and the ends of bonded sections [4, 8, 9]. Therefore, the de- 
sired functions mlj(t) and rs(t) can be represented in the form 

~,~ (~) t J 

t - t~(~) e r~  (1~I ~ 1, s = 1, m ) ,  

where Oj(~)  and Rs(~)  a r e  c o n t i n u o u s  f u n c t i o n s  in  [ -1 ,  1] .  The c o n s t a n t s  Q~ and QI~ a r e  de-  
t e r m i n e d  from R s ( - 1 ) ,  R s ( 1 ) ,  and t h e  r i g i d i t y  p a r a m e t e r s  o f  t h e  bonding  l a y e r  and t h e  r i b  [8 ] .  

An a p p r o x i m a t e  s o l u t i o n  o f  t h e  sy s t e m ( 2 . 4 ) - ( 2 . 7 )  on s e c t i o n s  F s (s  = 1, m) can be con-  
s t r u c t e d  by a f i r s t - o r d e r  s p l i n e  f i t  [1~] To do t h i s ,  we b reak  up t h e  s e c t i o n s  r s ( s . =  s = 
1, m) by t h e  p o i n t s  ~j ( j  = [~ N) and ~i i i  = 1] N~) ,  such  t h a t  t ( f ~ ) ~ r ~ ,  t(~)ev~, and t i 

t ( ~ ) .  The same number o f  p o i n t s  ~j a r e  u n i f o r m l y  d i s t r i b u t e d  in  each  i n t e r v a l i [ - - l ;  ~--d/(29~)] ,  
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[~s + ~(29s); I] i and [~ + ~(2ps); ~+i-- d/(29s)] (i = I, N s -- I) including their end points. The total 
number of points Sj is equal to N. We represent the unknown functions in the form Rs($) = 
NZ 

RkL~ (~) i where L~($) is a function which is continuous in [-i, i] and linear in each in- 
A=I J 

terval [~-i, ~j]i(J = 2, hE), where N E = N + N s, and L~(~) = 6kj. 

We reduce the solution of the problem (2.4)-(2.7) in the usual manner ([4, 8], for ex- 
ample) to a system of linear algebraic equations for the approximate values of the desired 

t2~-~ ) functions ~j(~) at the nodal points ~=cosk--~-j ~ (i = I, Nj,] = I, k) and for unknown coef- 

ficients R~, k = i, N Z, s = I, m (we do not present the explicit form of this system because 
of its complexity). 

Having determined ~j($) and Rs(~), we find the stresses and displacements in the plate 
from (1.2) and (2.1),;and also the stress-intensity coefficients at the ends of the cracks 
[4]. The data for isotropic media are obtained by a limiting transformation of the aniso- 
tropic parameters [~ + i, Hi + ~2 ~ 0) [8]. 

Below we present calculated results for a plate with cracks and bonded, pinned, or 
pinned-and-bonded ribs. Figure 2 illustrates the effect of the orientation angle ~ of the 
crack on the stress-intensity coefficients Ki,2(-a)/(o/~aa) in an unstrengthened half space 
and in a half space with two strengthening ribs (curves i and 2). The calculations were 
conducted for boron-reinforced plastic plates with E I = 276.1 GPa, E 2 = 27.61 GPa, G12 = 
10.35 GPa, v12 = 0.25, and h = 2 mm (solid lines); and a glass-reinforced plastic with E I = 
53.84 GPa, E 2 = 17.95 GPa, G12 = 8.63 GPa, ~12 = 0.25, h = 2 mm (dashed lines). It was 
assumed that the principal direction of the orthotropy E~ coincides with the direction of 
the crack. A tensile load o is applied to the plate; the relative rigidity of the rib is U s = 
Elha(EsFs )-I = 0.04 and of the bond layer V s = Gsdsa(E1hAs )-I = 0.05; the half-length of the 
rib is Ps = 10a; and the half-length of the debond is 6 s = 0. 

The effect of the length of the debond on the stress-intensity coefficients is demon- 
strated in Fig. 3 for cracks in an infinite boron-reinforced plastic plate, strengthened by 
one pinned-and-bonded rib located a distance 0.5a from the center of the crack. The 
problem was solved for the following initial parameters: number of pins on the rib N s = 18, 
d s = a/2, d = a/6, attachment step c s = a, h = 1 mm, and ~ = ~/2. The relative compliance of 
the pin and the bond M s = qsdZGs/As was taken to be zero (infinitely rigid pin - solid lines) 
and M s = i0 (compliant pins - dashed lines). For curve 1 the plate is loaded by tensile 
stresses o; for curve 2, identical stresses are applied to the plate and the ends of the rib. 
It is assumed that, for the most highly loaded region near the crack, debonding develops 
identically in both directions along the rib. When the debonding passes through the pin, the 
pin fails. This explains why the stress-intensity coefficients for strengthening with in- 
finitely rigid pins show large jumps, while there is no noticeable change for strengthening 
with compliant pins. 

Table l compares results obtained from the method presented here, with data from calcu- 
lations of a pinned joint from the structureless asymptotic theory of point connections [4]. 
The calculations were done for an infinite isotropic plate (E = 7200 MPa, ~ = 0.33, and h = 
2 mm), weakened by a linear cut L = {Ixl < a, y = 0} and strengthened by a pinned rib with 
parameters U s = 20, V s = 500, Ps = 10a, d s = a/2, and d = a/6. The number of infinitely 
rigid pins (M s = 0) on the rib is N s=lS, with a step of c s & a. The table shows values of 
Kl(a)(o/~a) as a function of the distance x/a between the center of the crack and the axis 
of the undamaged or damaged strengthening rib. Column 1 gives the results of our investiga- 
tion and column 2 gives the calculation from the model in [4]. For each pair of K1(a)/ 
(o ~a) values, column 3 shows the magnitude of the relative error in percent. As can be 
seen from the table, the calculated results for both models practically coincide. 

The approach presented above for calculating strengthened anisotropic damaged plates 
can be used to estimate the effect of a strengthening assembly on the residual strength of 
panels made from layered composite materials. In view of the various forms and types of 
damage to a layered composite, there can be a large number of failure criteria. We use the 
strain criterion [ll], which is substantiated by experimental data for a wide spectrum of 
layered composites with various types of layups. The criterion is based on the assumption 
that the layered composite with fissure-type damage fails at the ends of the fissure, when 
the magnitude of the strain in the basic load-carrying layers (that is, layers having the 
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TABLE i 

K~(a)/(ot' ~a) 

x/a damaged rib 

0 
0,5 
l,O 
1,5 
2,0 

0,891i 
0,8699 
0,9i94 
0,9753 
0,9918 

undamaged rib 
2 

0,8858 
0,8632 
0,9t80 
0,9763 
0,9922 

0,60 
0,78 
0,t5 
0,t0 
0,04 

i 2 

i,i145 1,1134 
1,1487 1,1482 
t,1558 i,1577 
1,0970 t,0969 
t,0474 i,0460 

0,10 
0,04 
0,16 
0,0i 
0,13 

largest angle to the direction of the applied load) reaches its limiting value. Figure 4 
shows the critical load a*, applied to the plate as a function of the type of layup. The 
calculations were conducted for an infinite plate of thickness h = I mm made from carbon- 
reinforced plastic with monolayer parameters E I = 141 GPa, E 2 = 9.5 GPa, Gl2 = 5.2 GPa, and 
v12 = 0.31 for various layups (0/i~/90~ where ~ is the angle between the x-axis and the 
fiber direction in the monolayer. The plate has crack-type damage with a half length a = 2, 
4, and 6 mm (curves 1-3, respectively) and is strengthened by three bonded ribs (with no de- 
bonds) or half-length 20 mm at a distance of 5 mm from each other. The relative rigidity 
of the ribs and the bond is U s = 0.4 and V s = 0.5. The ribs are assumed undamaged (solid 
curves) and broken in the middle (dashed curves). The generalized rupture viscosity parameter 
Qc = el 2v~-~r is taken to be 1.5 mm -I/2 according to [ii] for all layup types. Analysis of 
the curves leads to the conclusion that for undamaged ribs the critical load o*, is increased 
somewhat when the end of the crack goes behind the rib. For broken ribs, o*, decreases as the 
crack line grows, and a, decreases faster, as ~ becomes larger. 

Figure 5 shows the results of a calculational and experimental investigation of the 
growth of a fatigue crack from cyclic tension in a 2 mm thick plane specimens made from the 
aluminum alloy DI6AT ( max mln Ogross = i0 kg/mm 2 and Ogross = 1 kg/mm2), both for the plate in its 
initial state and with strengthening elements: a crack retainer with transverse dimensions 
15 • 2 mm from the DI6AT alloy and a wide titanium strap 50 x 0.5 mm. The elements were bonded 
with VK-9. The specimens had stress concentrators (a hole 5 mm in diameter in the center 
of the specimen with initiated cracks 1-2 mm long). In the calculations with the model de- 
scribed previously, the wide strap was interpreted as several adjacent ribs with equivalent 
rigidity. In order to determine the crack growth velocity in the bonded specimens, the Paris 
formula is used with empirical constants taken from tests on the initial specimens. The 
calculated results showed good agreement with the experimental data. For a crack i00 mm long, 
the difference between the calculated and the experimental number of load cycles with two 
retainers did not exceed 2%, but close to 4% with three. The excess of the calcu- 
lated result over the experimental data can be explained by the physical nonuniformity of 
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in the nature of the calculated curve and the experimental points follows from the assumed 
the bond layer (microdefects), which were not considered in the calculations. The differences 
calcuiational model of the contact along the length. We note that on the average the sur- 
vivability was 2.2 times higher for the specimens with two retainers as compared to the 
initial specimens, 3.7 times higher for three retainers, and 2.4 times for specimens with 
the strap. 

Analysis of theresults presented lead to the conclusion that the developed method for 
estimating the residual strength and the rupture time is trustworthy and dependable, and also 
that using bonded and pinned-and-bonded strengthening elements is highly effective for slowing 
fatigue cracks. 

The authors thank N. D. Abdrasilov for help in conducting the experiment. 
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